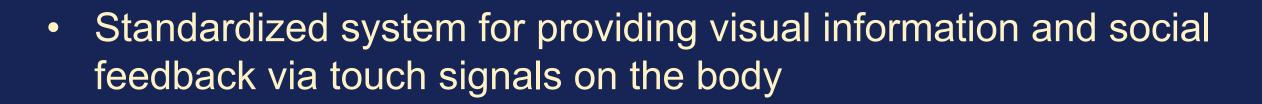
Speaker: Peggy

Haptic Communication to Facilitate Braille Instruction with Deaf-Blind Adults

Megan Conway, Peggy Costello, Deborah Harlin July, 2020

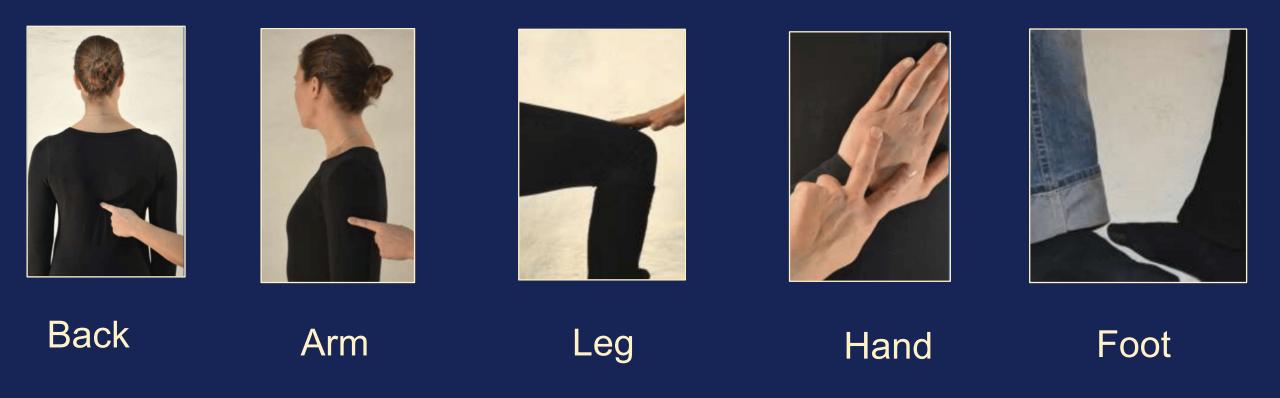


- 1. Description of Haptic Communication (Haptics)
- 2. Origins and Benefits of Haptics
- 3. Research on Haptics and Braille Instruction
- 4. Implications of Research for Practice

Haptic signals specifically designed to be received on body
Haptics does NOT replace sign or spoken language

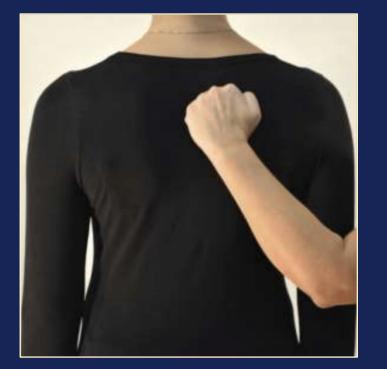
• Sign language was developed to be received visually

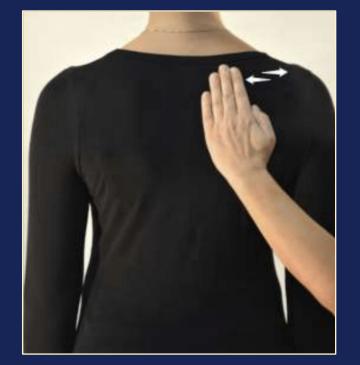
• Tactile sign language; slight modification to be received in hand


Speaker:

Peggy

Places of Articulation


Speaker: Peggy



Examples

Origins and Benefits

Speaker: Peggy

- Created by deaf-blind people in Norway
- Used in a variety of contexts

- Main benefits are real time and discreet access
 - Visual and environmental information
 - Social feedback
- Meaningful inclusion

Video Clip: "How Haptics has Impacted My Life" by Maricar Marquez

Speaker:

Peggy

Benefits that May Lead to Improved Teaching and Learning

Speaker: Peggy

- Quicker paced learning
- Less frustration
- Improved focus

- o not struggling with back & forth communication
- More efficient
- Enables simultaneous access to sensory information
 - o example

Video clip "Entering and Leaving a Room" with Faith and Adrianna demonstrating Haptics.

- Simultaneous sensory input and communication
- Environmental information

Research on Haptics & Braille Instruction

Speaker: Megan

- Hands and attention focused on braille
 - Feedback (i.e., good, go ahead, no try that again)
 - Instructional cues (i.e., skip a line, don't scrub)
 - Access to social feedback (nodding, smiling, laughing)
- Documentation, effectiveness and replication
- Six case studies in 2019-2020

- What is the impact of Haptics on the effectiveness and efficiency of braille instruction with deaf-blind learners?
- What are the additional benefits of Haptics during braille instruction?
- What are some of the components of delivering Haptics effectively?

Methods: Participants

Speaker: Megan

Demographics	Number of Participants (N=6)
Gender Male Female	3 3
Race/Ethnicity Black White	1 5
Previous Haptics Yes No	3 3
Primary Language Tactile ASL Visual ASL	5 1
Braille Skill Level Beginner Intermediate	4 2

Methods: Intervention

Speaker: Megan

Examples of Haptics Signals

- Yes/go ahead
- No
- Scrubbing
- Go up a line
- Braille cell replication
- Social feedback

Video clip of an instructor demonstrating several Haptics signals to a student.

- Yes, go ahead
- No, not correct
- Scrubbing
- Up a line

Methods: Data Collection & Analysis

- Multiple case studies
 - o Interviews
 - Observations
 - o Videos
- Qualitative analysis

Case Study of Haptics & Braille Instruction

- Woman with Usher syndrome
- Communicates using tactile ASL
- Benefitted from using Haptics during braille instruction
- Able to communicate and read simultaneously
- Liked the immediate feedback
- Felt that Haptics communicated encouragement from the instructor

Video clip of instructor using Haptics with student.

- Go back to the beginning of the line
- Braille cell outlined on upper arm
- I'm smiling
- Switch it around

- Potential for enhanced learning, communication and rapport
- Modified and new signals improved understanding
- Some signals were more helpful then others
- Students had personal preferences
- Instructor factors were also important

Results Examples

Speaker: Megan

Student Preferences:

Articulation on lower arm

Articulation on upper arm

Instructor Differences:

No Contact

Constant Contact

Video clip of student explaining why she likes using Haptics.

- Smooth
- Maintain focus
- Minimize frustration
- Efficient
- Effective

- Promise for learning, communication, and rapport
- Need for instructor skill and comfort with implementation
- More research is needed on Haptics and rehabilitation

• Haptics signals are used in the deaf-blind community to enhance access to communication and environmental information.

• Research shows that when used during braille instruction, Haptics supports learning and eases communication barriers.

• Haptics is a promising tool for enhancing rehabilitation training for deaf-blind people.

This has been a presentation by the **Helen Keller National Center**

Speaker: Peggy

We hope this information has been helpful. This power point is the property of HKNC Please do not distribute or use for training purposes. Contact HKNC for more information:

Megan Conway megan.conway@hknc.org

Peggy Costello peggy.costello@hknc.org

IRPD Department pld@hknc.org

